Zwischenfrüchte als agronomische Maßnahme für nachhaltige Bodenfruchtbarkeit und Ertragssicherheit (BonaRes CATCHY 1)

Catch-cropping as an Agrarian Tool for Continuing Soil Health and Yieldincrease (BonaRes CATCHY 1)

Ziele der Arbeitsgruppe (SP1) Pflanzenbau im Rahmen des CATCHY Projekts

Die Auswirkungen von Zwischenfrüchten auf die nachfolgenden Hauptkulturen Ackerbohnen, Mais und Winterweizen in Bezug auf die Ertragsarchitektur und den Ertrag sowie deren Effekte in humusmehrenden und humuszehrenden Fruchtfolgen wurden im Rahmen des CATCHY-Projekts untersucht und stellten das zentrale Ziel von SP1 dar. Der Forschungsschwerpunkt zielte vor allem auf die Untersuchung der Effekte von diversen Zwischenfruchtmischungen im Vergleich zu Reinsaaten. Zum Verständnis der Prozesse in diverseren Zwischenfrucht-mischungen wurden die Interaktionen zwischen den einzelnen Pflanzenarten in systematisch erstellten Mischungen untersucht

Zielsetzungen im Einzelnen

Die Ziele der von der HSWT bearbeiteten Arbeitspakete waren:

  • Quantifizierung der Auswirkungen von Zwischenfrüchten und Zwischenfruchtmischungen auf die Entwicklung und Ertragsarchitektur von Hauptfrüchten (Langzeitversuch über 8 Erntejahre in 2 Fruchtfolgen)
  • Bewertung des Einflusses von Zwischenfrüchten und Zwischenfruchtmischungen auf den Befall von pilzlichen Erregern in Hauptfrüchten (2 Fruchtfolgen über 8 Erntejahre)Zi
  • Abschätzung der Wirkungen unterschiedlichster Zwischenfrüchte auf den Entwicklungsverlauf, die Ertragsarchitektur und den Ertrag der Hauptfrucht Mais (Kurzeitversuche über ein Jahr)
  • Optimierung von Zwischenfruchtmischungen durch systematisch erstellte Artenmischungen auf der Basis der Ertragsleistung und Ertragsarchitektur der Folgefrucht Mais

Ergebnisse

In Bezug auf die direkten Auswirkungen von Zwischenfrüchten auf den Ertrag und die Ertragsarchitektur der Hauptfrucht Mais oder Ackerbohne und Winterweizen und die Interaktionen in Zwischenfruchtmischungen können folgenden Ergebnisse zusammengefasst werden:

Direkte Auswirkungen von Zwischenfrüchten auf die Hauptfrüchte Mais und Ackerbohne

In beiden Versuchsjahren wurde ein signifikant geringerer Silomais-Trockenmasseertrag nach dem Anbau von Phacelia als Zwischenfrucht gemessen. Überraschend lag die Ertragsleistung von Silomais nach dem Anbau von biodiversen Zwischenfrucht-Mischungen nur auf dem Niveau der Kontrolle bei der eine Brache eingehalten wurde. Am Standort Triesdorf wurde allerdings im Trockenjahr 2016 ein erhöhter Kornertrag bei Mais nach dem Anbau von Zwischenfruchtmischungen erzielt. Bei einem Vergleich von Zwischenfrucht-Reinsaaten und -Mischungen in Bezug auf die Ertragskomponenten von Körnermais am Standort Triesdorf deutete sich an, dass die organische Substanz der Zwischenfruchtmischungen schneller mineralisierten und dadurch vor allem die Kornzahl pro Kolben und das Tausendkorngewicht förderten. Die Zwischenfrüchte, die als Reinsaat vor Mais angebaut wurden mineralisierten zeitlich verzögert und beeinflussten nur das Tausendkorngewicht und die Nachfrucht des Maises, den Weizen.
In der Hauptkultur Ackerbohne wurde ebenfalls ein starker Einfluss der zuvor angebauten Zwischenfrüchte auf die Ertragskomponenten und den Ertrag festgestellt. Bis auf das Versuchsjahr  2016  am  Standort  Triesdorf  zeigten  alle  anderen  Ertragsdaten  die  gleichen Effekte.   Die   leguminosenhaltigen   Zwischenfruchtvarianten,   insbesondere   die   Variante TerraLife,  führten  zu  geringeren  Kornerträgenim  Vergleich  zur  Kontrolle.  Die  Variante Rauhafer  als  monokotyle  Pflanzenart  zeigte  eine  tendenziell  positive  Wirkung  auf  den Kornertrag   der   Ackerbohne.   In   der   Ertragsarchitektur   fiel   diese   Variante   durch   eine jahresunabhängige  hohe  Anzahl  von  Hülsen  pro  Pflanze  auf.  Die  Varianten  Brache  und Rauhafer bildeten deutlich mehr Kornanlagen im Vergleich zu den Mischungs-Varianten aus. Diese Unterschiede konnten auf einen geringeren Infektionsdruck in den Variante Brache und Rauhafer  mit pilzlichen Pathogenen  zurückgeführt  werden.  Das  Tausendkorngewicht  wurde nur sehr geringfügig durch die Zwischenfruchtvarianten beeinflusst.

Indirekte Auswirkungen von Zwischenfrüchten auf die zweite folgende Hauptfrucht Winterweizen

Im Versuchsjahr 2017 konnten erstmals Fruchtfolgeeffekte untersucht werden, die durch den Zwischenfruchtanbau ausgelöst wurden. In der Kontrolle (Brache) wurden an beiden Standorten, wie zu erwarten, leicht höhere Kornerträge im Weizen in der humusmehrenden Fruchtfolge nach dem Anbau von Ackerbohnen gemessen. Die Kombination der Vorfrucht Mais mit den Zwischenfrüchtenvarianten Alexandrinerklee, Mix4 und TerraLife führte am Standort Asendorf zu signifikant höheren Erträgen im Vergleich mit der Kontrolle. Bei einem Vergleich der Cluster Reinsaaten und Mischungen zeigten sich in der humusmehrenden Fruchtfolge hohe positive Korrelationen zwischen Ährenertrag und Kornertrag. In der humusmehrenden Fruchtfolge konnten diese Wechselwirkungen nicht beobachtet werden. Die Reinsaaten zeigten auch einen positiven Einfluss auf die Kornanlage in der humusmehrenden Fruchtfolge. Dies stützt die Hypothese, dass die Reinsaaten während der Ährchenanlage mehr pflanzenverfügbare Nährstoffe bereitstellten, da diese im Vergleich zu den Zwischenfruchtmischungen langsamer mineralisieren und daher eine positive Wirkung über die direkte Nachfrucht (Mais oder Ackerbohne) hinaus auch auf die Nach-Nachfrucht Weizen haben.

Interaktionen von Zwischenfruchtarten innerhalb systematisch erstellterZwischenfrucht-mischungen

Im Feldversuch am Standort Triesdorf wurden die Interaktionen der einzelnen Pflanzenarten innerhalb von Zwischenfruchtmischungen getestet. Hierfür wurde die Sprossbiomasse auf ihre Artenanteile untersucht. In den Versuchsjahren 2016 und 2017 wurden vor allem synergistische und additive Effekte in den Mischungen festgestellt. Die beiden Hauptkomponenten Senf und Phacelia führten in Kombination mit Leguminosen, Kruziferen und dem monokotylen Mischungspartner zu ähnlichen Effekten. Diese Beobachtungen waren im trockenen Herbst 2016 sehr stark ausgeprägt und konnten in dem nassen Herbst 2017 bestätigt werden.

Am Standort Triesdorf zeigten die Reinsaaten, abgesehen von Alexandrinerklee, Wicke und Kresse, eine hohe Sprossbiomassebildung. Starke synergistische Effekte wurden in der Kombination von einer in Reinsaat konkurrenzstarken Pflanzenart mit einem in Reinsaat schwachen Mischungspartner beobachtet. Im Feldversuch am Standort Triesdorf wurden die Interaktionen der einzelnen Pflanzenarten innerhalb von Zwischenfruchtmischungen getestet. Hierfür wurde die Sprossbiomasse auf ihre Artenanteile untersucht.

In den Versuchsjahren 2016 und 2017 wurden vor allem synergistische und additive Effekte in den Mischungen festgestellt. Die beiden Hauptkomponenten Senf und Phacelia führten in Kombination mit Leguminosen, Kruziferen und dem monokotylen Mischungspartner zu ähnlichen Effekten. Diese Beobachtungen waren im trockenen Herbst 2016 sehr stark ausgeprägt und konnten in dem nassen Herbst 2017 bestätigt werden.

Additive Effekte in Zweiermischungen wurden bei Pflanzenarten mit einer gleichwertigen Sprossbiomasse in Reinsaat beobachtet. Die Ergebnisse zeigten eine hohe Konkurrenzkraft der Kruziferen besonders unter trockenen Bedingungen. Unter feuchten Bedingungen in 2017 steigerten die Leguminosen ihre Biomasseleistung in den Mischungen deutlich.

Nutzen & Anwendungsmöglichkeiten

Die Ergebnisse aus dem Langzeitversuch bilden die Grundlage für die Entwicklung von neuen Zwischenfruchtmischungen zur Absicherung des Ertragspotentials in Hauptkulturen in unterschiedlichen Fruchtfolgen. Die Erkenntnisse über die Interaktionen in Mischungen unterstützen die quantitative und qualitative Auswahl von Pflanzenarten zur Erstellung oder Optimierung von biodiversen Zwischenfrucht-Mischungen für die landwirtschaftliche Praxis.

Objectives summary of the consortium

The main objective of the project is to employ catch cropping for developing innovative farming systems as well as soil management strategies for preserving and improving soil fertility. This strategy shall have an impact towards a more sustainable land use including catch crops, and could also contribute to an enhancement of marginal locations. Therefore, the focus of CATCHY is on catch cropping considered as an essential part of an integrated concept. Our aim is not only to develop improved management regimes by applying diverse catch crop mixtures, but also to develop a better and deeper understanding of the cause-effect relationships affecting, in particular, soil fertility parameters, and biological functions and interactions in soil and rhizosphere habitats. This functional orientation is supplemented with an agronomic and economic management interaction.

In detail, CATCHY has the following objectives:

  • to establish long-term field trials for testing different types crop rotations, especially including diverse catch crop mixtures
  • to assess the effect of individual species of catch crops and their mixtures on crop yields, agronomic traits, and on soil parameters like the size and availability of nutrient pools, nutrient fluxes, carbon inputs into soil, soil structure and the functions and diversity of plant and soil microbiomes
  • to contribute to a better understanding of the soil microbial community and its interaction with crops
  • to finally contribute improved management schemes to obtain and stabilize productive, fertile soils for yield security
  • to translate these improvements in user-focused calculations of long term costs and benefits of catch crop application, by decision-support tools
Bild3

Figure 1. Network of the research consortium on catch crops as tools for sustaining soil health and yield increase.

Scientific objectives of the consortium (Wissenschaftliche Arbeitsziele des Vorhabens)

The core idea of the present proposal is to fully exploit the agronomic potential of catch crops to stabilize and improve soil health over the long term. Due to a general lack of knowledge on how catch crops are best integrated into crop rotations to yield reproducible benefits, we propose a research approach that aims at a step-by-step assessment of the proposed beneficial effects of catch crops from the perspective of soil chemistry and microbiology, plant nutrition, agronomy and socioeconomics (Figure 1). Plant production and agronomy: Our core commercial partner (SP6) acts as an agricultural enterprise in the breeding and improvement of catch crops and catch crop mixtures. SP6 further runs the research station of the Deutsche Saatveredelung AG (DSV) in Asendorf (Niedersachsen) offering it as one of the trial locations. The station provides modern and specialized field trial technologies, expertise in data acquisition (e.g. GIS trial design, GPS based sowing yield, yield structure parameters, quality parameters) and processing with specialized computer programs. SP1 will provide a second site for field trials and analyze the effects of catch crops and some of their mixtures on agronomic traits like plant growth, phytopathological status and yield architecture in main crops as well as on soil organic matter content. Since the composition of catch crop mixtures and their effects on yield potential and pathogen infection of main crops is only poorly understood, catch crops will be examined for individual and additive effects in mixtures that promote yield of the main crop maize and/or the following crop winter wheat. This work will provide basic numbers for yield also from an economic perspective (for SP5) and determine the contribution of single species within catch crop mixtures in comparison to complex catch crop mixtures to the soil organic matter budget in two contrasting rotations.

Plant Nutrition

SP2 will use individual plant traits as “read-outs” for soil health, to determine the effect of individual catch crops on yield and nutritional traits of the subsequent main crop maize. The main crop maize will be grown after single catch crop species or a mixture thereof and assessed by three approaches:

  1. The nutriome of maize will be determined to build a signature of the nutritional status throughout plant development. Transcriptomics will be undertaken to reveal the nutritional and plant health status. In addition, the nutritional content of the catch crop will be measured to determine the contribution of individual catch crop species to nutrient mobilization in the soil.
  2. The second approach assesses root growth throughout the crop rotation by analyzing root system depth and root density by modern measures of quantitative PCR. It will be assessed if catch crop root systems occupy different niches within the soil profile that correlate with soil chemical or physical properties (with SP3) or microbial profiles (with SP4) and zones of greater root exploitation by the main crop.
  3. Soil solutions will be extracted by suction probes (with SP1) from catch crop niches for a metabolite analysis to search for molecular components that affect the root growth of the subsequent crop and to identify a link between metabolite signatures in soil solutions and microbial profiles. Based on results from the initial 3 years, the project will be expanded to rotations that include legumes, to effects on another main crop species (barley), and to the examination of newly designed catch crop mixtures.

Soil chemistry and soil microbiology

SP3 addresses the nutrient- and resource economy in the soilmycorrhizal-plant system in the context of catch crops in order to assess process-oriented management options. The approach of SP3 hereby lies in connecting soil carbon and nutrient monitoring with stable isotope tracing of carbon and nutrient (exemplarly nitrogen and potassium) turnover kinetics (e.g. 1, 2) and biological triggering of biogeochemical fluxes (3, 4) in conjunction with molecular approaches in monitoring biodiversity and functional trait identification of the soil microorganisms of SP4 (5, 6). This allows for the identification of processes of nutrient and energy transfer and the direct relation of these processes to below- and above-ground community shifts in biodiversity depending on catch crop management, thus triggering resource partitioning and stand amelioration. As soil bacteria and fungi often defy cultivation approaches, culture-independent population studies are required to assess their diversity and functions (SP4). The microbial nitrogen cycle and other beneficial functions of the microbiome in soil and rhizosphere will be analyzed by SP4 to identify processes and markers. Superior over mere 16S rRNA surveys is the retrieval of structural genes encoding key enzymes (functional marker genes, e.g. for the microbial N cycle) to assess the microbial functional diversity or activity (7). Particularly the analysis of gene expression (mRNA) reflects gene induction and thus actual activities and processes (8). Thus SP4 will apply mRNA and DNA-based methods which they have recently developed to quantify key genes of the microbial Ncycle by quantitative (RT-)PCR. Innovative next-generation sequencing (NGS) methods will be additionally applied to assess the functional diversity of the underlying populations, and also to evaluate changes in the overall functions of the microbiome by transcriptome studies, now allowing a previously unprecedented depth of analysis of the microbiome, its capacities, and changes therein caused by catch crops. In later phases of the project, localization of specific microbes at high spatial resolution with a link to the nutrient flow (Nano-SIMS, jointly with SP3) may be considered. Economics of catch crops and socio-economic impact: SP5 will model and program crop rotations, including catch crops, while focusing on economic viability. Including catch crops in more diverse rotations is a challenge because it requires a dynamic analysis of short and long term costs and benefits that are prerequisites for farmers’ acceptance. In particular different rotations have to be evaluated for long run benefits, and values put at specific elements such as the investigated catch crops. Our research will master the challenge by using the new concept of a transition matrix and its dynamic programming (9, 10). The focus is on costs and benefits of (i) (i) dynamics in cropping patterns, (ii) benefits of catch crops as a long term fertility instrument, (iii) soil organic enrichment as a fertility strategy, and (iv) weed, pest and pathogen control. We aim to show how natural capital aspects which can be built up by the integration of catch crops can be visualized by pricing. Crop rotations are considered tools to promote eco-system services provided through resources which are then modeled; in detail SP5 will provide a cost-benefit analysis of long term and discounted net benefits of catch crops in rotations. This question is addressed by a joint programming of farming and ecosystems, i.e. how a potential drop in natural fertility can be avoided by better economic planning of crops, space and rotation. The interesting issue for agronomists is how planning deficits result in unsustainable resource use and how to get better actions based on knowledge of long term costs and benefits of rotations. In conceptualizing eco-system services by catch crops with regard to improved soil properties, the knowledge gained in the natural science and agronomy SPs are translated in economic variables.

Publikationen

Groß, J.; Bauer, B. (2018): CATCHY - Catch-cropping as an agrarian tool for continuing soil health and yield-increase. öffentlicher Schlussbericht für die Technische Informationsbibliothek (TiB) an der Universität Hannover, Verlag der Hochschule Weihenstephan-Triesdorf, 30 S.
Volltext