Ziel des Forschungsprojekts ist die Erarbeitung von Einsatz- und Nutzungsmöglichkeiten von Food-Scannern zur schnellen und nicht zerstörerischen Erfassung von Qualitätsparametern für ausgewählte Obstarten auf den verschiedenen Stufen der Supply Chain. Das Projekt baut auf dem Forschungsprojekt "Zerstörungsfreie Messmethode zur schnellen Qualitätsbewertung und Haltbarkeitsabschätzung von Lebensmitteln mit Hilfe von Food-Scannern" auf und legt den Fokus auf den Praxiseinsatz von Food-Scannern entlang der gärtnerischen Wertschöpfungskette.
Goisser, S.; Wittmann, S.; Mempel, H. (2021): Food-scanner applications in the fruit and vegetable sector. Landtechnik 76 (1), S. 52-67. DOI: 10.15150/lt.2021.3264
Abstract
 more
 
Open Access
Goisser, S.; Wittmann, S.; Fernandes, M.; Mempel, H.; Ulrichs, C. (2020): Comparison of colorimeter and different portable food-scanners for non-destructive prediction of lycopene content in tomato fruit. Postharvest Biology and Technology 167, 111232, S. 1-8. DOI: 10.1016/j.postharvbio.2020.111232
Lycopene, the red colored carotenoid in tomatoes, has various health
benefits for humans due to its capability of scavenging free radicals.
Traditionally, the quantification of lycopene requires an elaborate
extraction process combined with HPLC analysis within the laboratory.
Recent studies focused simpler methods for determining lycopene and
utilized spectroscopic measurement methods. The aim of this study was to
compare non-destructive methods for the prediction of lycopene by using
color values from colorimeter measurements and Vis/NIR spectra recorded
with three commercially available and portable Vis/NIR spectrometers,
so called food-scanners. Tomatoes of five different ripening stages
(green to red) as well as tomatoes stored up to 22 days after harvest
were used for modeling. After measurement of color values and collection
of Vis/NIR spectra the corresponding lycopene content was analyzed
spectrophotometrically. Applying exponential regression models yielded
very good prediction of lycopene for color values L*, a*, a*/b* and the
tomato color index of 0.94, 0.90, 0.90 and 0.91, respectively. Color
value b* was not a suitable predictor for lycopene content, whereas the
(a*/b*)² value had the best linear fit of 0.87. In comparison to color
measurements, the cross-validated prediction models developed for all
three food-scanners had coefficients of determination (r²CV)
ranging from 0.92 to 0.96. Food-scanners also can be used for additional
measurements of internal fruit quality, and therefore have great
potential for fruit quality assessment by measuring a multitude of
important fruit traits in one single scan.
Abstract
 more
PhD student | M.Sc. Simon Goisser |
---|---|
Scientific supervisor HSWT | Prof. Dr. Heike Susanne Mempel |
Institutions |
Applied Science Centre (ASC) Smart Indoor Farming Fakultät Gartenbau und Lebensmitteltechnologie |
Scientific supervisor (extern) | Humboldt-Universität zu Berlin | Prof. Dr. Christian Ulrichs |
Duration | 2018-08-01 - 2021-10-25 |